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APPROXIMATING THE EFFECTS OF THERMAL PULSE ACTION ON A METAL 

BY GENERALIZING THE DIAGRAM OF PHASE-BOUNDARIES DISPLACEMENT 

A. G. Goloveiko, L. A. Babenya, 
and V. I. Martynikhina 

UDC 537.52:536.3 

A surface thermal pulse excites in a metal a wave of phase transformations whose mathe- 
matical description requires a formulation of strongly nonlinear thermophysical problems [i]. 
A machine solution of such problems is difficult because of the large volume of calculations, 
even for individual pulse modes, but the task becomes still more unwieldy when numerical data 
covering many metals over a wide range of pulse modes are needed. 

In this respect it is important that the results of computer-aided numerical solution of 
those thermophysical problems can be analytically generalized and on this basis, as has been 
shown in an earlier study [2], a system of equations can be proposed which will approximate, 
within an acceptable degree of accuracy, the final one-dimensional d~splacement of phase bound- 
aries in a metal due to action of a thermal pulse. This makes it possible to use those equa- 
tions for obtaining extensive information about many metals and pulse modes without going 
through a numerical solution of the actual thermophysical problems, which naturally deserves 
to be carefully considered. 

In the earlier study [2] there was proposed a method of using those equations for con- 
structing the diagram of the final displacement of phase boundaries in a metal due to action 
of a surface thermal ll-pulse with a given surface energy density W and a variable action 
time t. In this study the problem will be considered in broader terms, viz. constructing a 
generalized diagram of the final displacement of phase boundaries in a metal with both param- 
eters W and t of a thermal pulse varied. 

The generalized diagram will be calculated and constructed so that it will describe, with 
sufficient accuracy, the quantitative relation between the main parameters of a thermal pulse 
W, t and the main results of its action on a metal. The effect of a thermal pulse can, more- 
over, be characterized by displacement of the melting front Ym = YmCW, t) or by displacement 
of the evaporation front Ye = Ye (W, t), or by the relative displacement of the evaporation 
front 

~ =  ye~__ ; ~ = ~ ( W ,  t); 0 ~ < 1 .  (1) 
Vm 

A search for the optimum variant of this generalized diagram has revealed that it is most 
expediently drawn in the form of the relation between four quantities 

= ~(W,  t, Ym' ~)" (2) 
The main difficulty in calculations for the generalized diagram is related to the need to 
find the roots of transcendental equations, which requires appropriate numerical methods of 
solution. These authors have developed an algorithm of calculations for the complete general- 
ized diagram realizable on a small computer. It is based on the diagram representing the re- 
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lations Ym = Ym (t) and Ye = y~(t) with fixed values of the parameter W and with a variable 
pulse duration t. The typical=form of such a diagram is shown in Fig. i. Its calculation and 
thorough physical analysis can be found in the earlier report [2]. 

The method of calculation for this diagram hinges on its characteristic points 0, i, 2, 
3, 4. Point 4 corresponds to the maximum pulse duration t~ at which the melting front (melt- 
ing isotherm) moves beyond the boundaries of the metal. Point 3 corresponds to the pulse 
duration t3 at which the melting front moves to the maximum depth in the metal. The range 
of pulse durations ta ~t <~_t3 corresponds to the conditions under which evaporation of the 
metal is negligible. The durations t,, t3, and t2 are determined by the relations 

1.27W a 0 .222W 2 lOW z 
2 �9 �9 & =  " t ~ = - -  ( 3 )  t, = aCo (T m - T o )  2 ' 2 * , , aC~ (T~ - -  To) 2 ar~ fz 

with the dimensionless function f 

f = l  q-- C--e-v [ Tm To] 
r~ In (VorJt/W) 

(4) 

and are calculated for given W and t by the method of successive approximations, with a fast 
convergence from any initial approximation. 

Point I corresponds to the conditions under which theinduced thermophysical process reach- 
es the steady state at the end of the pulse. The corresponding duration t~ can be found from 
the equation 

W 2 
p---- = 0 (5) 

tiar~ 

by the method of half-division, assuming that to < t~ < t2, where to is the duration corres- 
ponding to point 0 on the diagram. The latter is, in turn, determined from the equation 

~ 0  - - - ~  

10W 

rvv~ [ l + C--~~ ( Inl0 T~ 
(6) 

and is associated with the conditions under which the steady-state velocity of the evapora- 
tion front remains one order of magnitude lower than the velocity of sound in the metal (high- 
er velocities of the evaporation front will not be considered here). 

After the characteristic points to,...,t4 have been determined, the calculations proceed 
according to the following algorithm. 

In the t~to range 

Wt(z). 2W ~ (7) 
. . . .  ~ ~ �9 

g e  = r~[ ' z af~r~t ' 

1 I (z) = err (z) + - -  [exp (-- z z) - -  11; (8) 
zV~- 

err (z) = 2 r (z V2-) - -  1, 

where #u(x) is the normal probability density distribution function [3]. 
calculated according to a standard program. 

In the to ~ t~ t: range 

* a r ~ f t  
Xm= - -  d (L); 

W 

U(L)= ln(T b / l n x ) - T o  ; & _ v o r o f t  

Tm -- To W 

(9) 

This function is 

(lO) 

(ll) 
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In the t2~ t ~ ts range one finds Ym = X*m from the equation 

( * ) * ierfc Xm C~ (T m - -  To) V-~- (12)  
2 ~ a - /  , 2W ' 

1 
ierfc (~) = .-7=-_ exp ( - -  1~)~-- p erfc ([3). 

g z ~  (13) 

Equation (12) is solved by the method of half-division, x (t2) and Xm(t3) being the limits 
of the interval containing the root of this equation with m 

0.45W (14) 
Xm (t~) = 

c,, (r%- r0) 

The method of finding x m in the t3 ~t~_ t4 range is analogous. The root of Eq. (12) is 
in this case contained within the interval between the limits x*(ts) and x*(t4). The values 

" interpolation. of Ym • the t~ ~t ~t2 range are found by the method of graphical m 

This procedure for calculating an individual diagram for a fixed value of parameter W and 
a variable pulse duration t can be repeated for other fixed values of parameter W, which will 
make it possible to construct a composite diagram for all the values of W under consideration. 
It must be noted, however, that a semilog scale, very convenient for an individual diagram, 
becomes unsuitable for a composite diagram, especially when the values of W cover several 
orders of magnitude. An analysis relevant to this reveals a necessity of plotting each of the 
three quantities W, t, and Ym on the composite diagram to a log scale. When also the quantity 

is now plotted on the composite diagram to a functional scale according to relation (i), 
then the ultimate goal of calculating and constructing the generalized diagram has been at- 
tained. 

Typical examples of generalized diagrams for specific metals are shown in Fig. 2a, b, c. 
When drawn with the proper technique, they are sufficiently accurate and very convenient for 
an analysis of a complex thermophysical process induced in a metal. 

These grains indicate that the generalized diagrams for different metals are similar in 
form but, with all other conditions the same, differ appreciably in the corresponding values 
of the parameters. They exhibit three distinct ranges: first range of predominant evaporation 
(~ = i), second range of evaporation and ielting (0 < e < i), and third range of predominant 
melting (~ = 0). 

The generalized diagram depicts the quantitative relation between four quantities ~ = 
~(W, t, Ym, ~)~ On this rests the possibility of easily solving a whole lot of complex prob- 
lems with the aid of this diagram: (W, t + Ym, ~); (W,ym + ~, t); (W, ~ + Ym' t); (Ym' t 
W, ~); (Ym' ~ § W, t); (e, t § W, ym ). 

In the problem (W, t + Ym' ~) are to be determined the effects Ym and ~ of thermal pulse 
action on a metal, with the pulse parameters W and t given. The practical aspect of this 
problem emerges when the quality of pulse treatment of a given metal is to be predicted in 
cases where a generator of thermal pulses with known performance parameters will be used for 
such a treatment. 

In the problem (W, Ym + e, t) is given one parameter of a thermal pulse W and one param- 
eter of its effect Ym" The problem involves determining the second pulse parameter t and the 
relative displacement of the evaporation front ~. An analysis of the diagrams for this case 
reveals that a given magnitude of Ym at a given W is attainable in two ways, viz., with and 
without evaporation of the metal by thermal pulses of very different durations, respectively. 
In practice this problem is associated with problems where requirements are imposed simultan- 
eously on the pulse generator (parameter W) and the metal treatment technology (parameter Ym). 

In the problem (W, ~ + Ym, t) are given the parameter W of a thermal pulse and the rela- 
tive displacement of the evaporation front ~. The quantities Ym and t are to be determined. 
This problem has a unique solution only when ~ > 0. In order to avoid an indeterminate an- 
swer with regard to the duration of a thermal pulse for a purely liquefying action on the me- 
tal (~ = 0), it is necessary to stipulate Ym, i.e., essentially to solve the problem (W, ~, 
Ym § t). 
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Fig. i. Zinc: diagram of final displacements of phase boundaries 
Ye' Ym (pm), as functions of the pulse duration t (sec) at a fixed 
value of W = i J/mm =, y (~m), t (sec). 
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Fig. 2. Generalized diagram of final displacement of phase 
boundaries in (a) silver,(b) zinc, (c) tungsten; W (J/mm2), Ym 
(~m), t (sec). 

It is well known that treatment of a metal with a thermal pulse can be effected in vari- 
ous ways. Erosion of a metal can occur preferentially either by the evaporation process or by 
the melting process. The second method (~ = 0) is less suitable for attaining the necessary 
dimensional finish, while the first method (~ = i) in contrast ensures just such a finish. 
Thus, also the practical significance of this problem becomes evident: it pinpoints the re- 
quirements which must be imposed on the pulse duration when the pulse parameter W and the 
mode of metal erosion have been specified beforehand. 

In the problem (y_, t ~ W, ~) is given the displacement of the melting front Ym and the 
duration t of a therm~Ll pulse, while the quantities W and ~ are to be determined. This problem 
has a unique solution for any given values of Ym and t. The practical significance of this 
problem is quite obvious. It pinpoints the requirements which must be imposed on the parame- 
ter W of a thermal pulse that a given pulse duration will ensure the needed displacement of 
the melting front Ym" 

In the problem (Ym' ~ § W, t) are given the effects of a thermal pulse Ym and ~, while 
the parameters of this pulse W and t are to be determined. When ~ > 0, then this problem has 
a unique solution. When = = 0, then the solution becomes a multivalued one. In order to 
avoid an indeterminate answer with regard to the pulse parameters, it is necessary to stipu- 
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late one of these parameters and solve the problem (~ ~, t + W) or (Ym, =, W ~ t). The 
practical significance of this problem is obvious. ~s so• actually determines the 
thermal pulse which will ensure the needed effects in a metal. 

In the problem (~, T ~ W, y_) are given ~ and t, while W and Ym are to be determined. The 
solution is unique for ~ > 0 an~ multivalued for ~ = 0. The multivaluedness is removed by 
solving the problem (~, t, W § ) or (~, t, Ym +W)" 

The solution of all these problems, each formulated individually, involves problems of 
their physical simulation and is fraught with tremendous mathematical difficulties. The use 
of generalized diagrams, which are sources of easily read extensive information about the 
effects of thermal pulses in a metal, eliminates these difficulties and facilitates a quanti- 
tative analysis of the corresponding physical and technological problems. 

The described method of constructing generalized diagrams is based on the one-dimension- 
al approximation of a thermophysieal process, which remains entirely valid as long as the 
zone of thermal influence in the metal is at least one order of magnitude wider than the 
displacement of the melting and evaporation fronts. From this condition follow some limita- 
tions on the applicability of the generalized diagram with respect to pulse modes. It is 
quite obvious that a pulse duration which will make the displacement of phase boundaries com- 
parable with the width of the zone of thermal influence in the metal does not fit on the dia- 
gram. For each specific ease one cant on this basis, estimate the particular limiting pulse 
modes and determine whether the generalized diagram is applicable, 

NOTATION 

Cv~ specific heat at constant volume; rv, heat of evaporation per unit volume, a, thermal 
diffusivity; Tm, melting point of a metal; T~, referred melting point of a metal; To, initial 
temperature; vo, velocity of sound in a metal; W, surface energy density of a thermal pulse, 
determined from the relation W = Ft, where F is the thermal flux density and t is the pulse 
duration; Tb, a characteristic temperature for a given metal, determined from the relation 
kT b = e, where k is the Boltzmann constant and c is the atomic binding energy. 
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